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Figure 1: The illustration of GRAM. Leaf nodes (solid circles) represents a medical concept in the EHR, while
the non-leaf nodes (dotted circles) represent more general concepts. The final representation gi of the leaf
concept ci is computed by combining the basic embeddings ei of ci and eg, ec and ea of its ancestors cg, cc
and ca via an attention mechanism. The final representations form the embedding matrix G for all leaf
concepts. After that, we use G to embed patient visit vector xt to a visit representation vt, which is then fed
to a neural network model to make the final prediction ŷt.
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The data requirement of deep learning models comes from having to assess exponential number of
combinations of input features. This can be alleviated by exploiting medical ontologies that encodes
hierarchical clinical constructs and relationships among medical concepts. Fortunately, there are many
well-organized ontologies in healthcare such as the International Classification of Diseases (ICD), Clinical
Classifications Software (CCS) (Stearns et al., 2001) or Systematized Nomenclature of Medicine-Clinical
Terms (SNOMED-CT) (Project et al., 2010). Nodes (i.e. medical concepts) close to one another in medical
ontologies are likely to be associated with similar patients, allowing us to transfer knowledge among them.
Therefore, proper use of medical ontologies will be helpful when we lack enough data for the nodes in the
ontology to train deep learning models.

In this work, we propose GRAM, a method that infuses information from medical ontologies into deep
learning models via neural attention. Considering the frequency of a medical concept in the EHR data and
its ancestors in the ontology, GRAM decides the representation of the medical concept by adaptively combining
its ancestors via attention mechanism. This will not only support deep learning models to learn robust
representations without large amount of data, but also learn interpretable representations that align well
with the knowledge from the ontology. The attention mechanism is trained in an end-to-end fashion with
the neural network model that predicts the onset of disease(s). We also propose an effective initialization
technique in addition to the ontological knowledge to better guide the representation learning process.

We compare predictive performance (i.e. accuracy, data needs, interpretability) of GRAM to various models
including the recurrent neural network (RNN) in two sequential diagnoses prediction tasks and one heart
failure (HF) prediction task. We demonstrate that GRAM is up to 10% more accurate than the basic RNN
for predicting diseases less observed in the training data. After discussing GRAM’s scalability, we visualize
the representations learned from various models, where GRAM provides more intuitive representations by
grouping similar medical concepts close to one another. Finally, we show GRAM’s attention mechanism can
be interpreted to understand how it assigns the right amount of attention to the ancestors of each medical
concept by considering the data availability and the ontology structure.

2 Methodology
We first define the notations describing EHR data and medical ontologies, followed by a description of GRAM
(Section 2.2), the end-to-end training of the attention generation and predictive modeling (Section 2.3), and
the efficient initialization scheme (Section 2.4).
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Disease Subtyping

Background: Parkinson's Disease (PD) has been demonstrated heterogeneous in clinical representation
and disease progression. Therefore, identifying subtypes with similar characteristics is an important task
to study the disease.

v The disease associates with clinical factors of motor, non-motor, and other variables, so that there is
no widely accepted consensus on the criteria for patient groups.

v Data-driven approaches of clustering methodologies can 
identify subtypes without a priori hypothesis about disease 
knowledge. 

v Recurrent neural networks are successful in many sequential 
learning tasks, and may allow us to find more PD progression 
patterns among clusters. 
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Disease Subtyping

Challenges:	
v Parkinson’s Disease (PD) is clinically heterogeneous associated with a broad
spectrum of clinical variable factors;

v How to identify disease progression biomarkers, so that we can provide a
better population for modifying drug trials.

Solution:	
v We first concatenated the multi-source records according to their occurring
timestamps to form a temporal sequence for each patient;

v A deep learning model LSTM is trained to encode the record sequences into a
series of standardized embeddings.

Challenges

Solution
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Disease Subtyping

v Features

Ref: Fereshtehnejad, Seyed-Mohammad, Silvia Rios Romenets, Julius BM Anang, Véronique Latreille, Jean-François Gagnon, and Ronald B.
Postuma. "New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other
phenotypes." JAMA neurology 72, no. 8 (2015): 863-873.

Target Clinical Variables
1 Clinical Diagnosis
2 Demographics
3 Motor symptoms: MDS-UPDRS scores*
4 Cognitive Accessments: MoCA*

5 Cognitive Categorization: Normal Cognition; Mild Cognitive 
Impairment; Dementia

6 Other nonmotor variable: REM Sleep Disorder
7 Biospecimen: Lumber Puncture Sample Collection

8 Biospecimen: Laboratory Procedures containing DNA, RNA, Urine, 
Plasma, & Serum samples

9 Imaging Results: DaTScan Striatal Binding Ratio
10 Imaging Results: Magnetic Resonance Imaging
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Disease Subtyping

vMethod
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Disease Subtyping

v Dataset

• The patient data were 
obtained from the 
Parkinson Progression 
Marker Initiative (PPMI) 
study.  http://www.ppmi-
info.org/

• The de-identified data 
contained archives of 
enrolled subjects from 
June 1, 2010, to June 1, 
2016. 

http://www.ppmi-info.org/
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Disease Subtyping: Visualization

v Results

Comparison with Traditional Clustering Methods
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Disease Subtyping: Statistical Testing

v Results

a	Chi-square	test;	b F-test; c One-way	ANOVA	test;	d Kruskal-Wallis	H-test

Characteristics
Subtype I (N = 201) Subtype II (N = 107) Subtype III (N=158) P-Value

Baseline Follow-up Baseline Follow-up Baseline Follow-up Static Progressi
on

Age onset 58.79(9.5) 61.93(9.0) 65.32(8.8) <0.0001a

Hoehn and Yahr Stage 1.44(0.5) 1.81(0.4) 1.52(0.5) 1.66(0.5) 1.61(0.5) 2.15(0.6) <0.0001a <0.0001a

MDS-UPDRS Part I 4.28(2.9) 6.92(4.5) 6.38(4.8) 7.26(5.2) 7.68(4.6) 12.03(5.7) <0.0001a <0.0001a

MDS-UPDRS Part II 4.52(3.2) 7.48(4.8) 5.58(4.4) 6.85(4.4) 7.37(4.4) 13.61(7.0) <0.0001a <0.0001a

MDS-UPDRS Part III 18.34(7.9) 22.39(11.8) 19.99(9.0) 23.18(9.9) 23.43(9.5) 30.71(13.9) 0.1146a <0.0001a

Montreal Cognitive 
Assessment

27.75(2.0) 27.98(1.8) 27.26(2.4) 27.09(2.4) 26.63(2.5) 24.62(4.0) <0.0001a <0.0001a

Geriatric Depression 
Scale

5.11(1.4) 5.2(1.3) 5.2(1.17) 5.31(1.2) 5.47(1.5) 5.96(1.8) 0.0017a 0.0010a

State Trait Anxiety 
Inventory 61.84(15.8) 59.52(16.0) 62.14(17.9) 61.89(18.1) 71.0(19.8) 74.25(20.1) 0.0053a 0.1717a

DaTScan 1.43(0.5) 1.23(0.5) 1.60 (0.6) 3.05 (0.6) 1.23 (0.5) 0.97 (0.5) <0.0001c <0.0001c
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Disease Subtyping

v Results

Progression in the Discriminative Variables
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Variables with 
p-value < 0.05 are 
shown 5 September 2019 @Microsoft Research15
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Disease Subtyping

v Results

Relationship with Conventional PD Subtypes

Correlation with Motor
Subtypes

Correlation with Cognitive
Subtypes

Correlation with Mood
Subtypes
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Disease Subtyping

v Interpretation

Subtype I
(43.1%)

Subtype II
(22.9%)

Subtype III
(33.9%)

58.79 years at baseline 61.93 years at baseline 65.32 years at baseline

Mild motor symptoms at 
baseline

Moderate motor symptoms 
at baseline

Poor motor symptoms at 
baseline

Mild non-motor symptoms at 
baseline

Moderate non-motor 
symptoms at baseline

Poor non-motor symptoms at 
baseline

Moderate motor decay Mild motor decay Severe motor decay 
Xi Zhang, Jingyuan Chou, Jian Liang, Cao Xiao, Yize Zhao, Harini Sarva, Claire Henchcliffe, Fei Wang,
Data-Driven Subtyping of Parkinson’s Disease Using Longitudinal Clinical Records: A Cohort Study.
Scientific Reports, Nature, 2018
.
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Disease Subtyping

v Summarization

Xi Zhang, Jingyuan Chou, Jian Liang, Cao Xiao, Yize Zhao, Harini Sarva, Claire Henchcliffe, Fei Wang,
Data-Driven Subtyping of Parkinson’s Disease Using Longitudinal Clinical Records: A Cohort Study. Nature
Scientific Reports, volume 9, Article number: 797 (2019).

ü This study is an initial attempt on leveraging advanced data analytics for identification of PD
subtypes with longitudinal and heterogeneous clinical study data.

ü Our approach has demonstrated strong potentials of identifcation of comprehensive
progressive PD subtypes.

Source Code: https://github.com/sheryl-ai/Nature-Scientific-Reports

v Limitation
ü the approach the deep learning (LSTM) procedure cannot be straightforwardly interpreted; Also,

our study is only conducted on the PPMI cohort.

https://github.com/sheryl-ai/Nature-Scientific-Reports
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vBackground: For complicated diseases such as Parkinson’s and Alzheimer’s, both
patients health records and neuroimaging information are very important for disease
understanding.

vGoal: Achieving superior classification performance on discriminating patients and
controls, with an interpretable learning model based on heterogeneous data
structure.

Patients Health Records NeuroImages

Multiple Modality Learning

Discriminating 
Patients and 
Health Controls
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Multiple Modality Learning

ü Sequential structure

ü Missing Values

vModality I: Electronic Health Records (Time Series)
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Multiple Modality Learning

BGG http://time.com/2860630/mri-scans-can-detect-early-onset-of-
parkinsons-study-finds/

ROI: Region of Interest

DTI: Diffusion	Tensor	Imaging

Desikan-Killiany 84

vModality II: Neuroimages (Graph Samples)

http://time.com/2860630/mri-scans-can-detect-early-onset-of-parkinsons-study-finds/
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Multiple Modality Learning

v Multi-Modality. The nature of EHR and neuroimage are completely different
where EHR data are sequential and a specific brain image is static, i.e., 3-dim
tensor or graph.

Solution: 
We proposed a novel Memory-based Graph Convolutional Network (MemGCN) to
perform integrative analysis with both patient EHRs and neuroimages, using two
major components: Graph Convolution and Memory array.

Challenges

Solution
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Multiple Modality Learning

v Utilize 3-dimensional brain coordinates of ROIs 
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Multiple Modality Learning

v Overview of the input data

population-
level

connectivity	
matrix

sequential	
vectors

spatial	graph

sample-level
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Multiple Modality Learning

v How about the amount of training data?

# of PD 
Subjects

# of HC
Subjects

596 158
Small data modelling

problem
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Multiple Modality Learning

v Pairwise-training strategy

# of Matching 
Samples 

# of Non-
Matching 
Samples

189,713 94,168

a sample pair

matching vs.
non-matching

x y
PD PD “same”
PD HC “different”
HC PD “different”
HC HC “same”
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Multiple Modality Learning

v The Learning Problem

population-
level

connectivity	
matrix

sequential	
vectors

spatial	graph

sample-level

a sample pair

matching vs.
non-matching

x y
PD PD “same”
PD HC “different”
HC PD “different”
HC HC “same”
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Multiple Modality Learning

v Network Architecture

B1: Graph

Convolutional Network

B2: Memory Arrays

B3: Multi-Hop Layer

B4: Matching Layer
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Multiple Modality Learning

v B1: Graph Convolutional Network (GCN)

A general operator ChebNet

Set as , = 0

Graph	Fourier	Transform

Chebyshev	polynomial
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Multiple Modality Learning

vPreliminary: End-to-End Memory Network

Sukhbaatar et al. ’15

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k

(different ways to combine o
k and u

k are proposed later):

u
k+1 = u

k + o
k
. (4)

2
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Multiple Modality Learning

vB2: Memory-Augmented GCN (MemGCN)

ü Clinical	Sequences	Reading

ü Memory	Representation	Retrieving
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Multiple Modality Learning

vB3: Extend to multiple hop architecture

1-hop MemGCN
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Multiple Modality Learning

vB4: Matching Layer
Impose structureè

Learning a metric space

Koch et al. ’15
Siamese-like Network

ü Bilinear Matching

ü Inner Product Matching

parameter	matrix
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Multiple Modality Learning

vObjective Function (cross entropy, pairwise strategy)

E. Matching Layer

Metric learning for brain connectivity graphs with multiple
layers normally involves several non-linearities so that the
complex underlying data structure can be captured. To train
such a neural network, a large amount of training data are
necessary to prevent overfitting [32]. Although large-scale
labeled dataset are often limited in clinical practice, metric
learning between sample pairs allow us increase the training
data significantly because of the possible combination of two
samples [33]. In our case, take a brain image acquisition as a
sample, the goal of metric learning is to learn discriminative
properties to distinguish whether the sample pairs in the same
diagnosis class or not.

The basic hypothesis is that, if two samples share the same
diagnosis result, the matching score between their high-level
feature maps should be high. Here, two sorts of matching
function are explored to calculate the similarities between pairs
of acquisitions.
Inner Product Matching

Let xm and xm0 denote any pair of initial brain connec-
tivity matrices, yL

m,i and y
L
m0,i denote their associated feature

vectors learned from the L-th hops by MemGCN, where i
is a vertex of ROI. The Euclidean distance computed in the
matching layer is a vector with each dimension corresponding
to each ROI, which is,

di(xm,xm0) = kyL
m,i � y

L
m0,ik2, i = 1, · · · , n (10)

Thus, d = (d1, · · · , dn) is the output of the matching layer.
Instead of computing the distance directly, the feature maps
are normalized along with dimension of hidden features and
then a inner product is used to get a similarity vector,

simi(xm,xm0) = (yL
m,i)

T
y
L
m0,i, i = 1, · · · , n. (11)

where simi is the inner product similarity on i-th dimension,
and it is equivalent to Euclidean distance if the vectors are
normalized.
Bilinear Matching

Above matching function in Eq.(11) only considers the
similarity of the corresponding ROI vectors of a given paired
brain graphs. The similarities computed by different ROI
are not modeled. To the aim, a simple bilinear matching
function [34] is used here. The matching score is defined as

simi,j(xm,xm0) = (yL
m,i)

T
My

L
m0,j , i, j = 1, · · · , n. (12)

where simi,j is the similarity between ROI i and j based on
bilinear matching. M 2 RfL

out⇥fL
out is a matrix parameterizing

the matching between the paired feature maps. With the
matching procedure in Eq.(12), the output of the matching
layer is a matrix, with each element suggesting the strength
of ROI connections. It is worth to note that if the parameter
matrix M is an identity matrix, the bilinear matching reduces
to the inner product matching.

F. Model Training
As in MemGCN, our output layer models the probability of

each sample pair is matching or non-matching. The similarity
representation from matching layer is passed to a fully con-
nected layer and a softmax layer for the eventual classification.
For each pair, set the output of fully connected layer is a
feature vector r. We calculate the probability distribution over
the binary classes by

p = softmax(wT
c r) (13)

where wc 2 R2 is a trainable parameter.
We train our model using a regularized cross-entropy loss

function. Let X = {(xm,xm0)}N be the training set of N
acquisition pairs. N is the number of total pairwise combina-
tion of brain graphs. The number of acquisitions M is much
smaller than N . The loss function we minimize is

L =
NX

m,m0

ỹm,m0 logpm,m0 + (1� ỹm,m0) log(1� pm,m0)

+ �k⇥k2 (14)

where ỹm,m0 denotes the label for sample pair (xm,xm0),
⇥ is the collection of trainable parameters. The MemGCN is
trained on machines with NVIDIA TESLA V100 GPUs by
using Adam optimizer [35] with mini-batch.

III. EXPERIMENTS

A. Dataset
The data we used to evaluate MemGCN are obtained from

the Parkinson Progression Marker Initiative (PPMI) [16] study.
PPMI is an ongoing PD study that has meticulously collected
various potential PD progression markers that have been
conducted for more than six years. Neuroimages and EHRs
are considered as two modalities in this work.

To obtain brain connectivity graphs, a series of prepro-
cessing procedures are conducted. For the correction of head
motion and eddy current distortions, FSL eddy-correct tool
is used to align the raw data to the b0 image. Also, the
gradient table is corrected accordingly. To remove the non-
brain tissue from the diffusion MRI, the Brain Extraction
Tool (BET) from FSL [36] is used. To correct for echo-
planar induced (EPI) susceptibility artifacts, which can cause
distortions at tissue-fluid interfaces, skull-stripped b0 images
are linearly aligned and then elastically registered to their
respective preprocessed structural MRI using the Advanced
Normalization Tools (ANTs1) with SyN nonlinear registration
algorithm [37]. The resulting 3D deformation fields are then
applied to the remaining diffusion-weighted volumes to gen-
erate full preprocessed diffusion MRI dataset for the brain
network reconstruction. In the meantime, ROIs are parcellated
from T1-weighted structural MRI using Freesufer2.

The connectivity graphs computed by three whole brain
tractography methods [38] for are applied, which is a coverage

1http://stnava.github.io/ANTs/
2https://surfer.nmr.mgh.harvard.edu

E. Matching Layer

Metric learning for brain connectivity graphs with multiple
layers normally involves several non-linearities so that the
complex underlying data structure can be captured. To train
such a neural network, a large amount of training data are
necessary to prevent overfitting [32]. Although large-scale
labeled dataset are often limited in clinical practice, metric
learning between sample pairs allow us increase the training
data significantly because of the possible combination of two
samples [33]. In our case, take a brain image acquisition as a
sample, the goal of metric learning is to learn discriminative
properties to distinguish whether the sample pairs in the same
diagnosis class or not.

The basic hypothesis is that, if two samples share the same
diagnosis result, the matching score between their high-level
feature maps should be high. Here, two sorts of matching
function are explored to calculate the similarities between pairs
of acquisitions.
Inner Product Matching

Let xm and xm0 denote any pair of initial brain connec-
tivity matrices, yL

m,i and y
L
m0,i denote their associated feature

vectors learned from the L-th hops by MemGCN, where i
is a vertex of ROI. The Euclidean distance computed in the
matching layer is a vector with each dimension corresponding
to each ROI, which is,

di(xm,xm0) = kyL
m,i � y

L
m0,ik2, i = 1, · · · , n (10)

Thus, d = (d1, · · · , dn) is the output of the matching layer.
Instead of computing the distance directly, the feature maps
are normalized along with dimension of hidden features and
then a inner product is used to get a similarity vector,

simi(xm,xm0) = (yL
m,i)

T
y
L
m0,i, i = 1, · · · , n. (11)

where simi is the inner product similarity on i-th dimension,
and it is equivalent to Euclidean distance if the vectors are
normalized.
Bilinear Matching

Above matching function in Eq.(11) only considers the
similarity of the corresponding ROI vectors of a given paired
brain graphs. The similarities computed by different ROI
are not modeled. To the aim, a simple bilinear matching
function [34] is used here. The matching score is defined as

simi,j(xm,xm0) = (yL
m,i)

T
My

L
m0,j , i, j = 1, · · · , n. (12)

where simi,j is the similarity between ROI i and j based on
bilinear matching. M 2 RfL

out⇥fL
out is a matrix parameterizing

the matching between the paired feature maps. With the
matching procedure in Eq.(12), the output of the matching
layer is a matrix, with each element suggesting the strength
of ROI connections. It is worth to note that if the parameter
matrix M is an identity matrix, the bilinear matching reduces
to the inner product matching.

F. Model Training
As in MemGCN, our output layer models the probability of

each sample pair is matching or non-matching. The similarity
representation from matching layer is passed to a fully con-
nected layer and a softmax layer for the eventual classification.
For each pair, set the output of fully connected layer is a
feature vector r. We calculate the probability distribution over
the binary classes by

p = softmax(wT
c r) (13)

where wc 2 R2 is a trainable parameter.
We train our model using a regularized cross-entropy loss

function. Let X = {(xm,xm0)}N be the training set of N
acquisition pairs. N is the number of total pairwise combina-
tion of brain graphs. The number of acquisitions M is much
smaller than N . The loss function we minimize is

L =
NX

m,m0

ỹm,m0 logpm,m0 + (1� ỹm,m0) log(1� pm,m0)

+ �k⇥k2 (14)

where ỹm,m0 denotes the label for sample pair (xm,xm0),
⇥ is the collection of trainable parameters. The MemGCN is
trained on machines with NVIDIA TESLA V100 GPUs by
using Adam optimizer [35] with mini-batch.

III. EXPERIMENTS

A. Dataset
The data we used to evaluate MemGCN are obtained from

the Parkinson Progression Marker Initiative (PPMI) [16] study.
PPMI is an ongoing PD study that has meticulously collected
various potential PD progression markers that have been
conducted for more than six years. Neuroimages and EHRs
are considered as two modalities in this work.

To obtain brain connectivity graphs, a series of prepro-
cessing procedures are conducted. For the correction of head
motion and eddy current distortions, FSL eddy-correct tool
is used to align the raw data to the b0 image. Also, the
gradient table is corrected accordingly. To remove the non-
brain tissue from the diffusion MRI, the Brain Extraction
Tool (BET) from FSL [36] is used. To correct for echo-
planar induced (EPI) susceptibility artifacts, which can cause
distortions at tissue-fluid interfaces, skull-stripped b0 images
are linearly aligned and then elastically registered to their
respective preprocessed structural MRI using the Advanced
Normalization Tools (ANTs1) with SyN nonlinear registration
algorithm [37]. The resulting 3D deformation fields are then
applied to the remaining diffusion-weighted volumes to gen-
erate full preprocessed diffusion MRI dataset for the brain
network reconstruction. In the meantime, ROIs are parcellated
from T1-weighted structural MRI using Freesufer2.

The connectivity graphs computed by three whole brain
tractography methods [38] for are applied, which is a coverage

1http://stnava.github.io/ANTs/
2https://surfer.nmr.mgh.harvard.edu

E. Matching Layer

Metric learning for brain connectivity graphs with multiple
layers normally involves several non-linearities so that the
complex underlying data structure can be captured. To train
such a neural network, a large amount of training data are
necessary to prevent overfitting [32]. Although large-scale
labeled dataset are often limited in clinical practice, metric
learning between sample pairs allow us increase the training
data significantly because of the possible combination of two
samples [33]. In our case, take a brain image acquisition as a
sample, the goal of metric learning is to learn discriminative
properties to distinguish whether the sample pairs in the same
diagnosis class or not.

The basic hypothesis is that, if two samples share the same
diagnosis result, the matching score between their high-level
feature maps should be high. Here, two sorts of matching
function are explored to calculate the similarities between pairs
of acquisitions.
Inner Product Matching

Let xm and xm0 denote any pair of initial brain connec-
tivity matrices, yL

m,i and y
L
m0,i denote their associated feature

vectors learned from the L-th hops by MemGCN, where i
is a vertex of ROI. The Euclidean distance computed in the
matching layer is a vector with each dimension corresponding
to each ROI, which is,

di(xm,xm0) = kyL
m,i � y

L
m0,ik2, i = 1, · · · , n (10)

Thus, d = (d1, · · · , dn) is the output of the matching layer.
Instead of computing the distance directly, the feature maps
are normalized along with dimension of hidden features and
then a inner product is used to get a similarity vector,

simi(xm,xm0) = (yL
m,i)

T
y
L
m0,i, i = 1, · · · , n. (11)

where simi is the inner product similarity on i-th dimension,
and it is equivalent to Euclidean distance if the vectors are
normalized.
Bilinear Matching

Above matching function in Eq.(11) only considers the
similarity of the corresponding ROI vectors of a given paired
brain graphs. The similarities computed by different ROI
are not modeled. To the aim, a simple bilinear matching
function [34] is used here. The matching score is defined as

simi,j(xm,xm0) = (yL
m,i)

T
My

L
m0,j , i, j = 1, · · · , n. (12)

where simi,j is the similarity between ROI i and j based on
bilinear matching. M 2 RfL

out⇥fL
out is a matrix parameterizing

the matching between the paired feature maps. With the
matching procedure in Eq.(12), the output of the matching
layer is a matrix, with each element suggesting the strength
of ROI connections. It is worth to note that if the parameter
matrix M is an identity matrix, the bilinear matching reduces
to the inner product matching.

F. Model Training
As in MemGCN, our output layer models the probability of

each sample pair is matching or non-matching. The similarity
representation from matching layer is passed to a fully con-
nected layer and a softmax layer for the eventual classification.
For each pair, set the output of fully connected layer is a
feature vector r. We calculate the probability distribution over
the binary classes by

p = softmax(wT
c r) (13)

where wc 2 R2 is a trainable parameter.
We train our model using a regularized cross-entropy loss

function. Let X = {(xm,xm0)}N be the training set of N
acquisition pairs. N is the number of total pairwise combina-
tion of brain graphs. The number of acquisitions M is much
smaller than N . The loss function we minimize is

L =
NX

m,m0

ỹm,m0 logpm,m0 + (1� ỹm,m0) log(1� pm,m0)

+ �k⇥k2 (14)

where ỹm,m0 denotes the label for sample pair (xm,xm0),
⇥ is the collection of trainable parameters. The MemGCN is
trained on machines with NVIDIA TESLA V100 GPUs by
using Adam optimizer [35] with mini-batch.

III. EXPERIMENTS

A. Dataset
The data we used to evaluate MemGCN are obtained from

the Parkinson Progression Marker Initiative (PPMI) [16] study.
PPMI is an ongoing PD study that has meticulously collected
various potential PD progression markers that have been
conducted for more than six years. Neuroimages and EHRs
are considered as two modalities in this work.

To obtain brain connectivity graphs, a series of prepro-
cessing procedures are conducted. For the correction of head
motion and eddy current distortions, FSL eddy-correct tool
is used to align the raw data to the b0 image. Also, the
gradient table is corrected accordingly. To remove the non-
brain tissue from the diffusion MRI, the Brain Extraction
Tool (BET) from FSL [36] is used. To correct for echo-
planar induced (EPI) susceptibility artifacts, which can cause
distortions at tissue-fluid interfaces, skull-stripped b0 images
are linearly aligned and then elastically registered to their
respective preprocessed structural MRI using the Advanced
Normalization Tools (ANTs1) with SyN nonlinear registration
algorithm [37]. The resulting 3D deformation fields are then
applied to the remaining diffusion-weighted volumes to gen-
erate full preprocessed diffusion MRI dataset for the brain
network reconstruction. In the meantime, ROIs are parcellated
from T1-weighted structural MRI using Freesufer2.

The connectivity graphs computed by three whole brain
tractography methods [38] for are applied, which is a coverage

1http://stnava.github.io/ANTs/
2https://surfer.nmr.mgh.harvard.edu
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vMatching vs Non-Matching Results
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vLongitudinal Alignment: Case Study 

Visualizations of attention
interaction matrices for one
PD case and one HC case
during 3 memory hops.
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vInterpretation: Learned Similarity (Region Scores)
TABLE III

THE INTERPRETABILITY OF THE OUTPUT REPRESENTATION OF MEMGCN’S INNER PRODUCT MATCHING LAYER. TOP-5 IDENTICAL ROIS IN PD
GROUP AND DISCRIMINATIVE ROIS BETWEEN PD AND HC GROUPS ARE LISTED. SIMILARITY SCORES ARE GIVEN.

Motor Non-motor Fusion
ROI Name Score ROI Name Score ROI Name Score

Identical ROIs
(PD Group)

Right Thalamus Proper 0.9258 Rh Paracentral 0.8563 Rh Pars Opercularis 0.9344
Lh Insula 0.9253 Rh Lingual 0.8180 Rh Lateral Occipital 0.8372
Right Pallidum 0.9226 Right Pallidum 0.8091 Left Accumbens Area 0.7887
Lh Rostral Middle Frontal 0.9210 Lh Parsorbitalis 0.6554 Rh Parahippocampal 0.7827
Parahippocampal 0.9206 Left Thalamus Proper 0.6387 Rh Frontalpole 0.7742

Discriminative ROIs
(PD vs. HC Group)

Right Putamen -0.9134 Left Putamen -0.7423 Right Thalamus Proper -0.8960
Right Accumbens Area -0.9075 Lh Frontal Pole -0.5754 Left Caudate -0.8439
Left Hippocampus -0.9059 Lh Supramarginal -0.5731 Lh Paracentral -0.8227
Right VentralDC -0.9058 Lh Inferior Parietal -0.5693 Lh Middle Temporal -0.7865
Left Caudate -0.9014 Lh Paracentral -0.4851 Lh Cuneus -0.7528

⇤ Lh and Rh are the abbreviations of Left Hemisphere and Right Hemisphere respectively.

(a) (b)
Fig. 3. The connectivity patterns learned by the bilinear matching layer.
(a) The top identical edges for PD group; (b) The top discriminative edges
between PD and HC groups.

tures of three hops of memory layer are same, the values
of the attention weights they learned are quite different in
typical cases. The matrices we draw in terms of colormaps
in Fig.4 indicate the attentive weights ↵ for one PD case
and one healthy control case. Here we abandon the first 2
padding dimensions of the shown cases and give 10 memory
positions (rows in the matrices). The attendance of all the
84 ROI vertices are depicted (columns in the matrices). A
darker color indicates where MemGCN is attending during
the multi-hop updating for representations. Basically, given a
specific case, which time point has more influences on his/her
PD progression and which ROI is more important according to
the clinical evidences can be analyzed through this longitudinal
alignment between DTIs and EHRs.

In general, the first hop attention appears to be primarily
concerned with identifying the salient interaction between
time-aware sequences and ROIs’ feature maps. In this hop, the
majority values are close to zero and only a few values are
close to one, such that a sketch of key ROIs and timestamps are
signified. The second and the third hops are then responsible
for the fine-grained interactions that are relevant to optimizing
the representation for the distance learning task.

Another important observation is that the PD case has
different interaction patterns compared to the healthy control.
At each hop, PD has a relatively narrow attention and fewer re-
sponses across memory positions. Consider the PD case shown

in Fig. 4(a), longitudinal alignments occur at timestamps 2, 4,
and 6 after 3-hop updating, meanwhile a series of ROIs might
function on the disease progression. By the Desikan-Killiany
Atlas, the darker ROI dimensions from 76 to 79 are Rh Insula,
Right Thalamus Proper, Right Caudate, and Right Putamen,
respectively, which matches our expectation for the PD case.

IV. RELATED WORK

We briefly review the existing research that is closely related
to the framework proposed in this paper.

EHR Mining. In recent years many algorithms have been
proposed to mine insights from patient EHRs. Initially those
methods were static in the sense that they first construct
patient vectors by aggregating their EHR with in a certain
observational time window and then build learning approaches
(e.g., predictive models and clustering methods) on top of
those vectors [2], [3]. Most of these methods are shallow
except the DeepPatient work which applied AutoEncoder to
further compress the patient vectors and obtain better repre-
sentations [44]. Recently researchers have also been exploring
CNN and RNN type of approaches to incorporate the temporal
information in patient EHRs into the modeling process [45]–
[47]. However, these methods compressed the patient EHRs
to a vector before it was fed to the final model, which is not
as flexible as the memory network we adopted.

GCN for Neuroimage Analysis. Many data mining ap-
proaches have been developed to perform neuroimage analysis
in recent years [48], among which deep learning models are
very popular because of their huge success in various computer
vision problems [49]. Recently, Ktena et al. [24] propose
to learn a metric from patients’ neuroimages on top of the
features constructed using GCN (where the graph is basically
the patients’ brain network constructed on the ROIs), which
can discriminate the cases versus controls with autism. Zhang
et al. [50] extend such approach to handle the multiple modal-
ities of the brain networks (e.g., constructed from different
tractography algorithms on DTI images). However, none of
them incorporated any clinical records from the patients. Our
work is the first step towards filling the gap.

Ref: 1. Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related 
potentials in normal and Parkinson‘s disease subjects, Brain, Volume 118, Issue 4, August 1995, Pages 913–933;

2. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease, Brain, Volume 117, Issue 4, August 1994, Pages 877–897;
3. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls, Brain,

Volume 127, Issue 4, April 2004, Pages 791–800.

• Average the learned representations for pairwise sample groups (by inner product )
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Motor Non-Motor
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Left Right

vInterpretation: Learned Similarity ( Identical Connection)
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Left Right

Xi Zhang, Jingyuan Chou, Fei Wang, Integrative Analysis of Patient Health Records and Neuroimages via 
Memory-based Graph Convolutional Network. ICDM’18: IEEE International Conference on Data Mining, 2018.

Source Code: https://github.com/sheryl-ai/MemGCN

vInterpretation: Learned Similarity (Discriminative Connection)

https://github.com/sheryl-ai/MemGCN
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vSummary

Xi Zhang, Jingyuan Chou, Fei Wang, Integrative Analysis of Patient Health Records and Neuroimages via 
Memory-based Graph Convolutional Network. ICDM’18: IEEE International Conference on Data Mining, 2018.

Source Code: https://github.com/sheryl-ai/MemGCN

ü Making a progress in modelling a small cohort data such as PPMI.

ü Interpretable high-level representations extracted from MemGCN
are explored.

ü Experiments on classification of Parkinson’s Disease demonstrate
the superiority of MemGCN.

https://github.com/sheryl-ai/MemGCN
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Part 2: Integrative Disease Analysis via Multi-Modality 

Part3: Meta-Learning on Limited Clinical Resources 

Part 1: Disease Subtyping on Clinical Times Series
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Heterogeneity

Obstacles

Data
Scarcity

Multiple
Modality

MetaPred: Meta-Learning for Clinical 
Risk Prediction with Limited Patient 
Electronic Health Records.  SIGKDD'19

Data-Driven Subtyping of Parkinson’s
Disease Using Longitudinal Clinical
Records: A Cohort Study. Nature
Scientific Reports, 2019

Integrative Analysis of Patient 
Health Records and Neuroimages via 
Memory-based Graph Convolutional 
Network. ICDM’18
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vBackgrounds

Ø Patient	EHRs:	each	patient	has	a	sequence	of	vectors;
Ø Predictive	models:	build	for	clinical	risks,	such	as	in-hospital	mortality,	hospital	
readmission,	chronic	disease	onset,	condition	exacerbation,	etc.
• LR,	SVM,	k-Nearest	Neighbor,	Random	Forest,	MLP;
• RNN,	CNN.	
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Meta-Learning on Limited Clinical Resource

vHow about patient samples that are insufficient? 

Ø it is expensive and sometimes even impossible for obtaining labelled new samples

Ø reusing data on other domain/tasks becomes a feasible strategy
- transfer learning
- meta-learning (learning to transfer)

Using the	learning	experiences from	a	set	of	relevant tasks …
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Meta-Learning on Limited Clinical Resource

Challenges:	
v Data Scarcity: EHRs are suffering sparsity, irregularity, temporality;
v Label Insufficient: labelled samples in medicine (patients) are relatively
limited, and creates troubles for building an effective predictive model.

v We proposed a MetaPred, a model agnostic meta-learning framework for low-
resource predictive modelling with patient EHRs.

Challenges

Solution
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Meta-Learning on Limited Clinical Resource

vMotivation 

Goal: is to predict the risks of target disease with few labeled patients, which give
rise to a low-resource classification.

The idea: is to take advantage of labeled patients from other relevant high-
resource domains and design the learning to transfer framework with sources and
a simulated target.
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Meta-Learning for Clinical Risk Prediction

vProblem Setup

sample
episodes

meta-train

fin
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4 steps:

ü sample episode
ü meta-train
ü fine-tune
ü predict

ü sample episode
ü meta-train
ü fine-tune
ü predict
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vPreliminary: MAML

In this section we will mainly introduce how to utilize the source
domain data DS in our MetaPred framework. The details on the
design of f will be introduced in the next section. In general, su-
pervised meta-learning provides models trained by data episodes
{Di } which is composed of multiple samples. Each Di is usually
split into two parts according to their labels. We further refer to
the domain where the testing data are from the simulated target
domain DTs , and it is still one of the source domains. Followed
previous work [15, 32], we called the training procedure based on
this split as meta-train, and the testing procedure as meta-test.

In summary, the proposed MetaPred framework illustrated in
Figure 1 consists of four steps: (1) constructing episodes by sampling
from the source domains and the simulated target domain; (2) learn
the parameters of predictors in an episode-by-episode manner; (3)
�ne-tuning the model parameters on the genuine target domain;
(4) predicting the target clinical risk.

3 THE METAPRED FRAMEWORK
The model-agnostic meta-learning strategy [15] serves as the back-
bone of our MetaPred framework. In particular, our goal is to learn
a risk predictor on the target domain. In order to achieve that, we
�rst perform model agnostic meta-learning on the source domains,
where the model parameters are learned through

�⇤ = Learner(T s ;MetaLearner(S1, · · · ,SK�1)) (1)

where for each data episode, the model parameters are �rst adjusted
through gradient descents on the objective loss measure on the
training data from the source domains (MetaLearner), and then
they will be further adjusted on the simulated target domain T s

(Learner). In the following, we will introduce the learning process
in detail, where the risk prediction model is assumed to be either
CNN or LTSM. First we provide basic neural network prediction
models as the options for Learner. Then we introduce the entire
parameter learning procedure of the proposed MetaPred, including
optimization-level adaptation and objective-level adaptation.

3.1 Risk Prediction Models
The EHR can be represented by sequences with multiple visits oc-
curring at di�erent time points for each patient. At each visit, the
records can be depicted by a binary vector xt 2 {0, 1} |C | , where t
denotes the time point. The values of 1 indicate the corresponding
medical event occurs at t , and 0 otherwise. C is the vocabulary of
medical events, and |C| is its cardinality. Thus input of the predic-
tive models can be denoted as a multivariate time series matrix
Xi = {xti }

Ti
t=1, where i is the patient index and Ti is the number of

visits for patient i . The risk prediction model is trained to �nd a
transformation mapping from input time series matrix Xi to the
target disease label yi 2 {0, 1}2. This makes the problem a sequence
classi�cation problem.
CNN-based Sequence Learning. There are three basic modules
in our CNN based structure: embedding Layer, convolutional layer
and multi-layer perceptron (MLP). Similar to natural language pro-
cessing tasks [24], 1-dimensional convolution operators are used
to discover the data patterns along the temporal dimension t . Be-
cause the values of medical records at the visits are distributed
in a discrete space, which is sparse and high-dimensional. It is

necessary to place an embedding layer before CNN, to obtain a
more compact continuous space for patient representation. The
learnable parameters of the embedding layer are a weight matrix
Wemb 2 Rd⇥ |C | and a bias vector bemb 2 Rd , where d is a dimen-
sion of the continuous space. The input vector at each visit xt is
mapped.

The 1-dimensional convolution network employs multiple �lter
matrices with one of their dimension �xed as the same as hidden
dimension d , which can be denoted as Wcon� 2 Rl⇥d . The other
�lter dimension l denotes the size of a �lter. A max pooling layer is
added after the convolution operation to get the most signi�cant
dimensions formed into a vector representation for each patient.
Finally, three MLP layers are used to produce the risk probabilities
as a prediction �̂i for the patient i . To sum, all of the weight matrices,
as well as bias vectors in our three basicmodules, make up thewhole
collection of parameter �, which is optimized through feeding the
network patients’ data D = {(Xi , yi )}.
LSTM-based Sequence Learning. Recurrent Neural Networks
are frequently adopted as a predictive model with great promise
in many sequence learning tasks. As for EHRs, RNN can in prin-
ciple map from the sequential medical records of previous inputs
that “memory” information that has been processed by the model
previously. A standard LSTM model [19] is used to replace the con-
volutional layer in the CNN architecture we just introduced. LSTM
weights, which are also parts of �, can be summarized into two
mapping matrix as Wh 2 Rd⇥4d and Wx 2 Rd⇥4d . They are in
charge of gates (input, forget, output) controlling as well as cell
state updating. We keep the same network structures of the embed-
ding layer and MLPs to make CNN and LSTM comparable for each
other.
Learner. With the learned parameter �, the prediction probability
of an input matrix Xi is computed by ŷi = f (Xi ;�). The neural
networks can be optimized by minimizing the following objective
with a cross-entropy:

L(�) = � 1
N

N’
i=1

⇣
(yi )T log (ŷi ) + (1 � yi )T log (1 � ŷi )

⌘
(2)

where N denotes the patient number in the training data. Similarly,
the loss functions for source and target domains have the same
formulation with Eq. (2), which are denoted as LS and LTs .

3.2 MetaPred Architecture
Optimization-Level Adaptation. In general, meta-learning aims
to optimize the objective over a variety of learning tasks T which
are associated with the corresponding datasets DT . The training
episodes Depi are generated by a data distribution p(DT). Then
the learning procedure of parameter � is de�ned as:

�⇤ = argmin
�
EmEDm

epi⇠p(DT)L�(DT) (3)

wherem episodes of training samples are used in the optimization.
L� is the loss function that might take di�erent formulations de-
pending on the di�erent strategies to design a meta-learner. As it is
claimed in meta-learning, the models should be capable of tackling
the unseen tasks during testing stages. In order to achieve this
goal, the loss function for one episode can be further de�ned as the

Figure 2: The overview of MetaPred work�ow. Depi is an episode randomly sampled. {Si }K�1
i=1 denotes source domains and

T s denotes the simulated target domain. The two gradient update loops of meta-training process are illustrated. The yellow
colored blocks and arrows are associated with Learner, while the blue ones are associated with MetaLearner. (“Target loss” is
used here instead of “Simulated Target loss” for simplicity.)

following form:

L� =
1

|Dte
epi |

’
(Xi ,yi )2Dte

epi

L�

⇣
(Xi , yi );Dtr

epi

⌘
(4)

where Dtr
epi and Dte

epi are the two parts of a sample set that
simulated training and testing in each episode as we introduced
previously. It is worth to note that Eq. (4) is a loss decided by the
prediction qualities of samples in Dte

epi . The model-agnostic meta-
learning (MAML) [15] provides us a parameter initialization scheme
for � in Eq. (4) by taking full advantage of Dtr

epi . It assumes that
there should be some internal representations are more transfer-
able than others, which could be discovered by an inner learning
procedure using Dtr

epi . Based on the essential idea, we show the
underlying mechanism of model-agnostic meta-learning �ts the
problem of transferring knowledge from source domains to a low-
resource target domain very well, which can be used in solving the
risk prediction problem of several underdiagnosed diseases.

Figure 2 illustrates the architecture of the proposed MetaPred.
The general meta-learning algorithms generate episodes over task
distributions and shu�e the tasks to make each task could be a
part of Dtr

epi or Dte
epi . Instead, we de�ne the two disjoint parts of

the episode as source domains and a target domain to satisfy a
transfer learning setting. To construct a single episode Depi in the
meta-training process, we sample data via {(XSi , ySi )} ⇠ p(DSi )
and {(XTs , yTs )} ⇠ p(DTs ) respectively. In order to optimize �
that can quickly adapt to the held-out samples in target domain, the
inner learning procedure should be pushed forward by the supervise
information of the source samples. To meet this requirement, the
following gradient update occurs:

�0 = � � �r�

K�1’
i

LSi (5)

where LSi , i = 1, · · · ,K � 1 are loss functions of source domains.
� is a hyperparameter controlling the update rate. The source loss
is computed by LSi = L(ySi , f (XSi ,�)). From Eq. (5) we can
observe that it is a standard form gradient descent optimization.
In practice, we will repeat this process k times, then output the �0

as an initial parameter for the simulated target domain. The inner
learning can be view as an Inner-Loop which is shown in Figure 2.

Once we set � = �0 before the update step of the simulated
target domain, the minimize problem de�ned by the loss given in
Eq. (4) becomes:

min
�

LTs (f�0) = min
�

’
DTs
epi⇠p(DTs )

L
�
yTs , f (XTs ,�0)

�
(6)

where DTs = {(XTs , yTs )}. Given the loss form of LTs in the
simulated target domain, it is computed by the output parameter
�0 obtain via inner gradient update in Eq. (5). Then, the meta-
optimization using DTs is performed with:

� = � � �r�LTs (f�0) (7)

where � is the meta-learning rate. Hence, the simulated target
loss involves an Outer-Loop for gradient updating. Compared to
the standard gradient updating in Eq. (5), the gradient-like term
in Eq. (7) essentially resorts to a gradient through a gradient that
can be named as meta-gradient. Accordingly, the entire learning
procedure can be viewed as: iteratively transfer the parameter �
learned from source domains through utilizing it as the initialization
of the parameter that needs to be updated in the simulated target
domain.

To build end-to-end risk prediction models with the model-
agnostic gradient updating, we use the deep neural network struc-
tures that are trained using medical records X and diagnosis results
y described in Section 3.1. The objectives for both source and sim-
ulated target are set as cross-entropy introduced in Eq. (2). One
interesting point is that all the parameters of source domains and

Meta-learning, also known as learning to learn, aims to
optimize the objective over a variety of learning tasks which
are associated with the corresponding datasets .

Loss function:

In this section we will mainly introduce how to utilize the source
domain data DS in our MetaPred framework. The details on the
design of f will be introduced in the next section. In general, su-
pervised meta-learning provides models trained by data episodes
{Di } which is composed of multiple samples. Each Di is usually
split into two parts according to their labels. We further refer to
the domain where the testing data are from the simulated target
domain DTs , and it is still one of the source domains. Followed
previous work [15, 32], we called the training procedure based on
this split as meta-train, and the testing procedure as meta-test.

In summary, the proposed MetaPred framework illustrated in
Figure 1 consists of four steps: (1) constructing episodes by sampling
from the source domains and the simulated target domain; (2) learn
the parameters of predictors in an episode-by-episode manner; (3)
�ne-tuning the model parameters on the genuine target domain;
(4) predicting the target clinical risk.

3 THE METAPRED FRAMEWORK
The model-agnostic meta-learning strategy [15] serves as the back-
bone of our MetaPred framework. In particular, our goal is to learn
a risk predictor on the target domain. In order to achieve that, we
�rst perform model agnostic meta-learning on the source domains,
where the model parameters are learned through

�⇤ = Learner(T s ;MetaLearner(S1, · · · ,SK�1)) (1)

where for each data episode, the model parameters are �rst adjusted
through gradient descents on the objective loss measure on the
training data from the source domains (MetaLearner), and then
they will be further adjusted on the simulated target domain T s

(Learner). In the following, we will introduce the learning process
in detail, where the risk prediction model is assumed to be either
CNN or LTSM. First we provide basic neural network prediction
models as the options for Learner. Then we introduce the entire
parameter learning procedure of the proposed MetaPred, including
optimization-level adaptation and objective-level adaptation.

3.1 Risk Prediction Models
The EHR can be represented by sequences with multiple visits oc-
curring at di�erent time points for each patient. At each visit, the
records can be depicted by a binary vector xt 2 {0, 1} |C | , where t
denotes the time point. The values of 1 indicate the corresponding
medical event occurs at t , and 0 otherwise. C is the vocabulary of
medical events, and |C| is its cardinality. Thus input of the predic-
tive models can be denoted as a multivariate time series matrix
Xi = {xti }

Ti
t=1, where i is the patient index and Ti is the number of

visits for patient i . The risk prediction model is trained to �nd a
transformation mapping from input time series matrix Xi to the
target disease label yi 2 {0, 1}2. This makes the problem a sequence
classi�cation problem.
CNN-based Sequence Learning. There are three basic modules
in our CNN based structure: embedding Layer, convolutional layer
and multi-layer perceptron (MLP). Similar to natural language pro-
cessing tasks [24], 1-dimensional convolution operators are used
to discover the data patterns along the temporal dimension t . Be-
cause the values of medical records at the visits are distributed
in a discrete space, which is sparse and high-dimensional. It is

necessary to place an embedding layer before CNN, to obtain a
more compact continuous space for patient representation. The
learnable parameters of the embedding layer are a weight matrix
Wemb 2 Rd⇥ |C | and a bias vector bemb 2 Rd , where d is a dimen-
sion of the continuous space. The input vector at each visit xt is
mapped.

The 1-dimensional convolution network employs multiple �lter
matrices with one of their dimension �xed as the same as hidden
dimension d , which can be denoted as Wcon� 2 Rl⇥d . The other
�lter dimension l denotes the size of a �lter. A max pooling layer is
added after the convolution operation to get the most signi�cant
dimensions formed into a vector representation for each patient.
Finally, three MLP layers are used to produce the risk probabilities
as a prediction �̂i for the patient i . To sum, all of the weight matrices,
as well as bias vectors in our three basicmodules, make up thewhole
collection of parameter �, which is optimized through feeding the
network patients’ data D = {(Xi , yi )}.
LSTM-based Sequence Learning. Recurrent Neural Networks
are frequently adopted as a predictive model with great promise
in many sequence learning tasks. As for EHRs, RNN can in prin-
ciple map from the sequential medical records of previous inputs
that “memory” information that has been processed by the model
previously. A standard LSTM model [19] is used to replace the con-
volutional layer in the CNN architecture we just introduced. LSTM
weights, which are also parts of �, can be summarized into two
mapping matrix as Wh 2 Rd⇥4d and Wx 2 Rd⇥4d . They are in
charge of gates (input, forget, output) controlling as well as cell
state updating. We keep the same network structures of the embed-
ding layer and MLPs to make CNN and LSTM comparable for each
other.
Learner. With the learned parameter �, the prediction probability
of an input matrix Xi is computed by ŷi = f (Xi ;�). The neural
networks can be optimized by minimizing the following objective
with a cross-entropy:

L(�) = � 1
N

N’
i=1

⇣
(yi )T log (ŷi ) + (1 � yi )T log (1 � ŷi )

⌘
(2)

where N denotes the patient number in the training data. Similarly,
the loss functions for source and target domains have the same
formulation with Eq. (2), which are denoted as LS and LTs .

3.2 MetaPred Architecture
Optimization-Level Adaptation. In general, meta-learning aims
to optimize the objective over a variety of learning tasks T which
are associated with the corresponding datasets DT . The training
episodes Depi are generated by a data distribution p(DT). Then
the learning procedure of parameter � is de�ned as:

�⇤ = argmin
�
EmEDm

epi⇠p(DT)L�(DT) (3)

wherem episodes of training samples are used in the optimization.
L� is the loss function that might take di�erent formulations de-
pending on the di�erent strategies to design a meta-learner. As it is
claimed in meta-learning, the models should be capable of tackling
the unseen tasks during testing stages. In order to achieve this
goal, the loss function for one episode can be further de�ned as the

In this section we will mainly introduce how to utilize the source
domain data DS in our MetaPred framework. The details on the
design of f will be introduced in the next section. In general, su-
pervised meta-learning provides models trained by data episodes
{Di } which is composed of multiple samples. Each Di is usually
split into two parts according to their labels. We further refer to
the domain where the testing data are from the simulated target
domain DTs , and it is still one of the source domains. Followed
previous work [15, 32], we called the training procedure based on
this split as meta-train, and the testing procedure as meta-test.

In summary, the proposed MetaPred framework illustrated in
Figure 1 consists of four steps: (1) constructing episodes by sampling
from the source domains and the simulated target domain; (2) learn
the parameters of predictors in an episode-by-episode manner; (3)
�ne-tuning the model parameters on the genuine target domain;
(4) predicting the target clinical risk.

3 THE METAPRED FRAMEWORK
The model-agnostic meta-learning strategy [15] serves as the back-
bone of our MetaPred framework. In particular, our goal is to learn
a risk predictor on the target domain. In order to achieve that, we
�rst perform model agnostic meta-learning on the source domains,
where the model parameters are learned through

�⇤ = Learner(T s ;MetaLearner(S1, · · · ,SK�1)) (1)

where for each data episode, the model parameters are �rst adjusted
through gradient descents on the objective loss measure on the
training data from the source domains (MetaLearner), and then
they will be further adjusted on the simulated target domain T s

(Learner). In the following, we will introduce the learning process
in detail, where the risk prediction model is assumed to be either
CNN or LTSM. First we provide basic neural network prediction
models as the options for Learner. Then we introduce the entire
parameter learning procedure of the proposed MetaPred, including
optimization-level adaptation and objective-level adaptation.

3.1 Risk Prediction Models
The EHR can be represented by sequences with multiple visits oc-
curring at di�erent time points for each patient. At each visit, the
records can be depicted by a binary vector xt 2 {0, 1} |C | , where t
denotes the time point. The values of 1 indicate the corresponding
medical event occurs at t , and 0 otherwise. C is the vocabulary of
medical events, and |C| is its cardinality. Thus input of the predic-
tive models can be denoted as a multivariate time series matrix
Xi = {xti }

Ti
t=1, where i is the patient index and Ti is the number of

visits for patient i . The risk prediction model is trained to �nd a
transformation mapping from input time series matrix Xi to the
target disease label yi 2 {0, 1}2. This makes the problem a sequence
classi�cation problem.
CNN-based Sequence Learning. There are three basic modules
in our CNN based structure: embedding Layer, convolutional layer
and multi-layer perceptron (MLP). Similar to natural language pro-
cessing tasks [24], 1-dimensional convolution operators are used
to discover the data patterns along the temporal dimension t . Be-
cause the values of medical records at the visits are distributed
in a discrete space, which is sparse and high-dimensional. It is

necessary to place an embedding layer before CNN, to obtain a
more compact continuous space for patient representation. The
learnable parameters of the embedding layer are a weight matrix
Wemb 2 Rd⇥ |C | and a bias vector bemb 2 Rd , where d is a dimen-
sion of the continuous space. The input vector at each visit xt is
mapped.

The 1-dimensional convolution network employs multiple �lter
matrices with one of their dimension �xed as the same as hidden
dimension d , which can be denoted as Wcon� 2 Rl⇥d . The other
�lter dimension l denotes the size of a �lter. A max pooling layer is
added after the convolution operation to get the most signi�cant
dimensions formed into a vector representation for each patient.
Finally, three MLP layers are used to produce the risk probabilities
as a prediction �̂i for the patient i . To sum, all of the weight matrices,
as well as bias vectors in our three basicmodules, make up thewhole
collection of parameter �, which is optimized through feeding the
network patients’ data D = {(Xi , yi )}.
LSTM-based Sequence Learning. Recurrent Neural Networks
are frequently adopted as a predictive model with great promise
in many sequence learning tasks. As for EHRs, RNN can in prin-
ciple map from the sequential medical records of previous inputs
that “memory” information that has been processed by the model
previously. A standard LSTM model [19] is used to replace the con-
volutional layer in the CNN architecture we just introduced. LSTM
weights, which are also parts of �, can be summarized into two
mapping matrix as Wh 2 Rd⇥4d and Wx 2 Rd⇥4d . They are in
charge of gates (input, forget, output) controlling as well as cell
state updating. We keep the same network structures of the embed-
ding layer and MLPs to make CNN and LSTM comparable for each
other.
Learner. With the learned parameter �, the prediction probability
of an input matrix Xi is computed by ŷi = f (Xi ;�). The neural
networks can be optimized by minimizing the following objective
with a cross-entropy:

L(�) = � 1
N

N’
i=1

⇣
(yi )T log (ŷi ) + (1 � yi )T log (1 � ŷi )

⌘
(2)

where N denotes the patient number in the training data. Similarly,
the loss functions for source and target domains have the same
formulation with Eq. (2), which are denoted as LS and LTs .

3.2 MetaPred Architecture
Optimization-Level Adaptation. In general, meta-learning aims
to optimize the objective over a variety of learning tasks T which
are associated with the corresponding datasets DT . The training
episodes Depi are generated by a data distribution p(DT). Then
the learning procedure of parameter � is de�ned as:

�⇤ = argmin
�
EmEDm

epi⇠p(DT)L�(DT) (3)

wherem episodes of training samples are used in the optimization.
L� is the loss function that might take di�erent formulations de-
pending on the di�erent strategies to design a meta-learner. As it is
claimed in meta-learning, the models should be capable of tackling
the unseen tasks during testing stages. In order to achieve this
goal, the loss function for one episode can be further de�ned as the
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Algorithm 1 MetaPred Training
Require: Source domains Si ; Simulated target domain T s ;
Require: Hyperparameters � , �, µ;
1: Initialize model parameter � randomly
2: while Outer-Loop not done do
3: Sample batch of episodes {Depi } from DSi and DTs

4: while Inner-Loop not done do
5: {(XSi , ySi )}K�1

i=1 , {(XTs , yTs )} = {Depi }
6: Compute LSi = L(ySi , f (XSi ,�)), i = 1, · · · ,K � 1
7: Parameter fast adaption with gradient descent:
8: �0 = � � �r�

ÕK�1
i LSi

9: end while
10: Compute LTs = L(yTs , f (XTs ,�0))
11: Update � = � � �r�(LTs + µ

ÕK�1
i LSi ) using Adam

12: end while

simulated target domains are tied, with di�erent stages to update.
The colors in Figure 2 provides an indication about the aforemen-
tioned two kinds of gradient pass.
Objective-Level Adaptation. While MAML provides an e�ective
transferable parameter learning scheme for disease risk prediction
in the low-resource situation, it cannot ensure su�ciently transfer-
ring the critical knowledge from the source domain. On the one
hand, meta-learning generally encourages that the simulated target
task could be randomly generated, and their model could be adapted
to a large or in�nite number of tasks [15, 41]. Di�erent from these
works, transfer learning often requires to capture domain shifts.
To do so, the simulated target that is used in learning to transfer
cannot be randomly sampled.

On the other hand, the task distribution is a common decisive
factor of the success for meta-learning. In other words, the dis-
tributions of the investigated source and target domains should
not be too diverse. In real-world healthcare scenario, however, pa-
tients who su�ering di�erence diseases might have medical records
at various visits with heterogeneity. In this case, it is di�cult to
meta-learn during optimization loops. To alleviate this problem,
we propose to enhance some guarantee from the objective-level in
predictive modeling so that the scarcity of the fast adaptation in
the optimization-level can be compensated. In particular, we pro-
pose to improve the objective by incorporating supervision from
source domains. The �nal objective of MetaPred is given in the
mathematical form as:

LT(f�0 ) = LTs (f�0 ) + µ
K�1’
i

LSi (f�)

=
’
DTs
epi

L
�
yTs , f (XTs , �

0)
�
+ µ

K�1’
i

’
DSi
epi

L
�
ySi , f (XSi , �)

� (8)

where {(XSi , ySi )}K�1
i=1 is a collection of medical records matrix

and label vectors of source domains. DT s

epi and DS i
epi are samples

from the source domain and the simulated target domain in episode
Depi , respectively. Hyperparameter µ balances the contributions
of the sources and simulated target in the meta-learn process. Note
that the parameter of source loss is � but not �0, as there is no
need to conduct fast adaptation for source domain. Now the newly

Table 1: Statistics of datasets with disease domains.

Domain Case Control # of visit Ave. # of visit

MCI 1,965 4,388 161,773 22.24
Alzheimer’s 1,165 4,628 136,197 20.73
Parkinson’s 1,348 3,588 105,053 20.01

Dementia 3,438 1,591 98,187 18.06
Amnesia 2,974 4,215 180,091 21.60

designed meta-gradient is updated by the following equation:

� = � � �r�(LTs + µ
K�1’
i

LSi ) (9)

So far the main architecture of MetaPred is introduced. With the
incorporated source loss on the basis of general meta-learning, our
parameter learning process need to be rede�ned as:

�⇤ = Learner
⇣
T s , {Si }K�1

i ;MetaLearner({Si }K�1
i )

⌘
(10)

Algorithm 1 is the outline of meta-training of the MetaPred frame-
work. Similar to meta-training, episodes of the test set are consist
of samples from the source domain and genuine target domain. The
procedure in meta-test shows how to get a risk prediction for the
given low-resource disease by a few gradient steps. The test set of
the target disease domain is used to construct the meta-test episodes
for the model evaluation. Since MetaPred is model-agnostic, the
gradient updating scheme can be easily extended to more sophisti-
cated neural networks including various attention mechanisms or
gated networks with prior medical knowledge [3, 7].

4 EXPERIMENTS

4.1 Dataset
In this section, experimental results on a real-world EHR dataset are
reported. The data we used in experiments is the research data ware-
house (RDW) from Oregon Health & Science University (OHSU)
Hospital. It contains the EHR of over 2.5 million patients with more
than 20 million patient encounters, is mined by Oregon Clinical
and Translational Research Center (OCTRI). For certain conditions,
we may not have su�cient patients for training and testing. In our
study, we selected the conditions including more than 1, 000 cases
(MCI, Alzheimer’s disease, Parkinson’s disease, Dementia, and Am-
nesia) as the di�erent tasks in the multi-domain setting. For each
domain, controls are patients su�ering other cognitive disorders,
which makes the classi�cation tasks di�cult and meaningful in
practice. Also, Dementia and Amnesia are used as source domains,
while the more challenging tasks MCI, Alzheimer, Parkinson are
set as target domains.

We matched the case and controls by requiring their age di�er-
ence within a 5-year range so that the age distributions between
the case group and control group are consistent. For each patient,
we set a 2-year observation window to collect the training data, and
the prediction window is set to half a year (i.e., we are predicting

In this section we will mainly introduce how to utilize the source
domain data DS in our MetaPred framework. The details on the
design of f will be introduced in the next section. In general, su-
pervised meta-learning provides models trained by data episodes
{Di } which is composed of multiple samples. Each Di is usually
split into two parts according to their labels. We further refer to
the domain where the testing data are from the simulated target
domain DTs , and it is still one of the source domains. Followed
previous work [15, 32], we called the training procedure based on
this split as meta-train, and the testing procedure as meta-test.

In summary, the proposed MetaPred framework illustrated in
Figure 1 consists of four steps: (1) constructing episodes by sampling
from the source domains and the simulated target domain; (2) learn
the parameters of predictors in an episode-by-episode manner; (3)
�ne-tuning the model parameters on the genuine target domain;
(4) predicting the target clinical risk.

3 THE METAPRED FRAMEWORK
The model-agnostic meta-learning strategy [15] serves as the back-
bone of our MetaPred framework. In particular, our goal is to learn
a risk predictor on the target domain. In order to achieve that, we
�rst perform model agnostic meta-learning on the source domains,
where the model parameters are learned through

�⇤ = Learner(T s ;MetaLearner(S1, · · · ,SK�1)) (1)

where for each data episode, the model parameters are �rst adjusted
through gradient descents on the objective loss measure on the
training data from the source domains (MetaLearner), and then
they will be further adjusted on the simulated target domain T s

(Learner). In the following, we will introduce the learning process
in detail, where the risk prediction model is assumed to be either
CNN or LTSM. First we provide basic neural network prediction
models as the options for Learner. Then we introduce the entire
parameter learning procedure of the proposed MetaPred, including
optimization-level adaptation and objective-level adaptation.

3.1 Risk Prediction Models
The EHR can be represented by sequences with multiple visits oc-
curring at di�erent time points for each patient. At each visit, the
records can be depicted by a binary vector xt 2 {0, 1} |C | , where t
denotes the time point. The values of 1 indicate the corresponding
medical event occurs at t , and 0 otherwise. C is the vocabulary of
medical events, and |C| is its cardinality. Thus input of the predic-
tive models can be denoted as a multivariate time series matrix
Xi = {xti }

Ti
t=1, where i is the patient index and Ti is the number of

visits for patient i . The risk prediction model is trained to �nd a
transformation mapping from input time series matrix Xi to the
target disease label yi 2 {0, 1}2. This makes the problem a sequence
classi�cation problem.
CNN-based Sequence Learning. There are three basic modules
in our CNN based structure: embedding Layer, convolutional layer
and multi-layer perceptron (MLP). Similar to natural language pro-
cessing tasks [24], 1-dimensional convolution operators are used
to discover the data patterns along the temporal dimension t . Be-
cause the values of medical records at the visits are distributed
in a discrete space, which is sparse and high-dimensional. It is

necessary to place an embedding layer before CNN, to obtain a
more compact continuous space for patient representation. The
learnable parameters of the embedding layer are a weight matrix
Wemb 2 Rd⇥ |C | and a bias vector bemb 2 Rd , where d is a dimen-
sion of the continuous space. The input vector at each visit xt is
mapped.

The 1-dimensional convolution network employs multiple �lter
matrices with one of their dimension �xed as the same as hidden
dimension d , which can be denoted as Wcon� 2 Rl⇥d . The other
�lter dimension l denotes the size of a �lter. A max pooling layer is
added after the convolution operation to get the most signi�cant
dimensions formed into a vector representation for each patient.
Finally, three MLP layers are used to produce the risk probabilities
as a prediction �̂i for the patient i . To sum, all of the weight matrices,
as well as bias vectors in our three basicmodules, make up thewhole
collection of parameter �, which is optimized through feeding the
network patients’ data D = {(Xi , yi )}.
LSTM-based Sequence Learning. Recurrent Neural Networks
are frequently adopted as a predictive model with great promise
in many sequence learning tasks. As for EHRs, RNN can in prin-
ciple map from the sequential medical records of previous inputs
that “memory” information that has been processed by the model
previously. A standard LSTM model [19] is used to replace the con-
volutional layer in the CNN architecture we just introduced. LSTM
weights, which are also parts of �, can be summarized into two
mapping matrix as Wh 2 Rd⇥4d and Wx 2 Rd⇥4d . They are in
charge of gates (input, forget, output) controlling as well as cell
state updating. We keep the same network structures of the embed-
ding layer and MLPs to make CNN and LSTM comparable for each
other.
Learner. With the learned parameter �, the prediction probability
of an input matrix Xi is computed by ŷi = f (Xi ;�). The neural
networks can be optimized by minimizing the following objective
with a cross-entropy:

L(�) = � 1
N

N’
i=1

⇣
(yi )T log (ŷi ) + (1 � yi )T log (1 � ŷi )

⌘
(2)

where N denotes the patient number in the training data. Similarly,
the loss functions for source and target domains have the same
formulation with Eq. (2), which are denoted as LS and LTs .

3.2 MetaPred Architecture
Optimization-Level Adaptation. In general, meta-learning aims
to optimize the objective over a variety of learning tasks T which
are associated with the corresponding datasets DT . The training
episodes Depi are generated by a data distribution p(DT). Then
the learning procedure of parameter � is de�ned as:

�⇤ = argmin
�
EmEDm

epi⇠p(DT)L�(DT) (3)

wherem episodes of training samples are used in the optimization.
L� is the loss function that might take di�erent formulations de-
pending on the di�erent strategies to design a meta-learner. As it is
claimed in meta-learning, the models should be capable of tackling
the unseen tasks during testing stages. In order to achieve this
goal, the loss function for one episode can be further de�ned as the

ü Parameter-level adaptation: Model-agnostic, typing parameters for
source/target domain.

ü Objective-level adaptation: bounded target risk via empirical risk of source
domains.
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4 A bound relating the source and target error

We now proceed to develop bounds on the target domain generalization performance of a
classifier trained in the source domain. We first show how to bound the target error in terms
of the source error, the difference between labeling functions fS and fT , and the divergence
between the distributions DS and DT . Since we expect the labeling function difference to
be small in practice, we focus here on measuring distribution divergence, and especially on
how to estimate it with finite samples of unlabeled data from DS and DT . That is the role of
the H-divergence introduced in Sect. 4.1.

A natural measure of divergence for distributions is the L1 or variation divergence

d1(D, D′) = 2 sup
B∈B

|PrD [B] − PrD′ [B]| ,

where B is the set of measurable subsets under D and D′. We make use of this measure to
state an initial bound on the target error of a classifier.

Theorem 1 For a hypothesis h,

ϵT (h) ≤ ϵS(h) + d1(DS, DT )

+ min
{
EDS

[
|fS(x) − fT (x)|

]
,EDT

[
|fS(x) − fT (x)|

] }
.

Proof See Appendix. !

In this bound, the first term is the source error, which a training algorithm might seek
to minimize, and the third is the difference in labeling functions across the two domains,
which we expect to be small. The problem is the remaining term. Bounding the error in
terms of the L1 divergence between distributions has two disadvantages. First, it cannot be
accurately estimated from finite samples of arbitrary distributions (Batu et al. 2000; Kifer
et al. 2004) and therefore has limited usefulness in practice. Second, for our purposes the L1

divergence is an overly strict measure that unnecessarily inflates the bound, since it involves
a supremum over all measurable subsets. We are only interested in the error of a hypothesis
from some class of finite complexity, thus we can restrict our attentions to the subsets on
which this type of hypothesis can commit errors. The divergence measure introduced in the
next section addresses both of these concerns.

4.1 The H-divergence

Definition 1 (Based on Kifer et al. 2004) Given a domain X with D and D′ probability
distributions over X , let H be a hypothesis class on X and denote by I (h) the set for which
h ∈ H is the characteristic function; that is, x ∈ I (h) ⇔ h(x) = 1. The H-divergence be-
tween D and D′ is

dH(D, D′) = 2 sup
h∈H

|PrD [I (h)] − PrD′ [I (h)] |.

The H-divergence resolves both problems associated with the L1 divergence. First, for hy-
pothesis classes H of finite VC dimension, the H-divergence can be estimated from finite
samples (see Lemma 1 below). Second, the H-divergence for any class H is never larger
than the L1 divergence, and is in general smaller when H has finite VC dimension.

Since it plays an important role in the rest of this work, we now state a slight modification
of Theorem 3.4 of Kifer et al. (2004) as a lemma.

Domain Adaptation Bound

Algorithm 1 MetaPred Training
Require: Source domains Si ; Simulated target domain T s ;
Require: Hyperparameters � , �, µ;
1: Initialize model parameter � randomly
2: while Outer-Loop not done do
3: Sample batch of episodes {Depi } from DSi and DTs

4: while Inner-Loop not done do
5: {(XSi , ySi )}K�1

i=1 , {(XTs , yTs )} = {Depi }
6: Compute LSi = L(ySi , f (XSi ,�)), i = 1, · · · ,K � 1
7: Parameter fast adaption with gradient descent:
8: �0 = � � �r�

ÕK�1
i LSi

9: end while
10: Compute LTs = L(yTs , f (XTs ,�0))
11: Update � = � � �r�(LTs + µ

ÕK�1
i LSi ) using Adam

12: end while

simulated target domains are tied, with di�erent stages to update.
The colors in Figure 2 provides an indication about the aforemen-
tioned two kinds of gradient pass.
Objective-Level Adaptation. While MAML provides an e�ective
transferable parameter learning scheme for disease risk prediction
in the low-resource situation, it cannot ensure su�ciently transfer-
ring the critical knowledge from the source domain. On the one
hand, meta-learning generally encourages that the simulated target
task could be randomly generated, and their model could be adapted
to a large or in�nite number of tasks [15, 41]. Di�erent from these
works, transfer learning often requires to capture domain shifts.
To do so, the simulated target that is used in learning to transfer
cannot be randomly sampled.

On the other hand, the task distribution is a common decisive
factor of the success for meta-learning. In other words, the dis-
tributions of the investigated source and target domains should
not be too diverse. In real-world healthcare scenario, however, pa-
tients who su�ering di�erence diseases might have medical records
at various visits with heterogeneity. In this case, it is di�cult to
meta-learn during optimization loops. To alleviate this problem,
we propose to enhance some guarantee from the objective-level in
predictive modeling so that the scarcity of the fast adaptation in
the optimization-level can be compensated. In particular, we pro-
pose to improve the objective by incorporating supervision from
source domains. The �nal objective of MetaPred is given in the
mathematical form as:

LT(f�0 ) = LTs (f�0 ) + µ
K�1’
i

LSi (f�)

=
’
DTs
epi

L
�
yTs , f (XTs , �

0)
�
+ µ

K�1’
i

’
DSi
epi

L
�
ySi , f (XSi , �)

� (8)

where {(XSi , ySi )}K�1
i=1 is a collection of medical records matrix

and label vectors of source domains. DT s

epi and DS i
epi are samples

from the source domain and the simulated target domain in episode
Depi , respectively. Hyperparameter µ balances the contributions
of the sources and simulated target in the meta-learn process. Note
that the parameter of source loss is � but not �0, as there is no
need to conduct fast adaptation for source domain. Now the newly

Table 1: Statistics of datasets with disease domains.

Domain Case Control # of visit Ave. # of visit

MCI 1,965 4,388 161,773 22.24
Alzheimer’s 1,165 4,628 136,197 20.73
Parkinson’s 1,348 3,588 105,053 20.01

Dementia 3,438 1,591 98,187 18.06
Amnesia 2,974 4,215 180,091 21.60

designed meta-gradient is updated by the following equation:

� = � � �r�(LTs + µ
K�1’
i

LSi ) (9)

So far the main architecture of MetaPred is introduced. With the
incorporated source loss on the basis of general meta-learning, our
parameter learning process need to be rede�ned as:

�⇤ = Learner
⇣
T s , {Si }K�1

i ;MetaLearner({Si }K�1
i )

⌘
(10)

Algorithm 1 is the outline of meta-training of the MetaPred frame-
work. Similar to meta-training, episodes of the test set are consist
of samples from the source domain and genuine target domain. The
procedure in meta-test shows how to get a risk prediction for the
given low-resource disease by a few gradient steps. The test set of
the target disease domain is used to construct the meta-test episodes
for the model evaluation. Since MetaPred is model-agnostic, the
gradient updating scheme can be easily extended to more sophisti-
cated neural networks including various attention mechanisms or
gated networks with prior medical knowledge [3, 7].

4 EXPERIMENTS

4.1 Dataset
In this section, experimental results on a real-world EHR dataset are
reported. The data we used in experiments is the research data ware-
house (RDW) from Oregon Health & Science University (OHSU)
Hospital. It contains the EHR of over 2.5 million patients with more
than 20 million patient encounters, is mined by Oregon Clinical
and Translational Research Center (OCTRI). For certain conditions,
we may not have su�cient patients for training and testing. In our
study, we selected the conditions including more than 1, 000 cases
(MCI, Alzheimer’s disease, Parkinson’s disease, Dementia, and Am-
nesia) as the di�erent tasks in the multi-domain setting. For each
domain, controls are patients su�ering other cognitive disorders,
which makes the classi�cation tasks di�cult and meaningful in
practice. Also, Dementia and Amnesia are used as source domains,
while the more challenging tasks MCI, Alzheimer, Parkinson are
set as target domains.

We matched the case and controls by requiring their age di�er-
ence within a 5-year range so that the age distributions between
the case group and control group are consistent. For each patient,
we set a 2-year observation window to collect the training data, and
the prediction window is set to half a year (i.e., we are predicting

Ben-David	et al. ’10

all the domains share the 
same feature space
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Algorithm 1 MetaPred Training
Require: Source domains Si ; Simulated target domain T s ;
Require: Hyperparameters � , �, µ;
1: Initialize model parameter � randomly
2: while Outer-Loop not done do
3: Sample batch of episodes {Depi } from DSi and DTs

4: while Inner-Loop not done do
5: {(XSi , ySi )}K�1

i=1 , {(XTs , yTs )} = {Depi }
6: Compute LSi = L(ySi , f (XSi ,�)), i = 1, · · · ,K � 1
7: Parameter fast adaption with gradient descent:
8: �0 = � � �r�

ÕK�1
i LSi

9: end while
10: Compute LTs = L(yTs , f (XTs ,�0))
11: Update � = � � �r�(LTs + µ

ÕK�1
i LSi ) using Adam

12: end while

simulated target domains are tied, with di�erent stages to update.
The colors in Figure 2 provides an indication about the aforemen-
tioned two kinds of gradient pass.
Objective-Level Adaptation. While MAML provides an e�ective
transferable parameter learning scheme for disease risk prediction
in the low-resource situation, it cannot ensure su�ciently transfer-
ring the critical knowledge from the source domain. On the one
hand, meta-learning generally encourages that the simulated target
task could be randomly generated, and their model could be adapted
to a large or in�nite number of tasks [15, 41]. Di�erent from these
works, transfer learning often requires to capture domain shifts.
To do so, the simulated target that is used in learning to transfer
cannot be randomly sampled.

On the other hand, the task distribution is a common decisive
factor of the success for meta-learning. In other words, the dis-
tributions of the investigated source and target domains should
not be too diverse. In real-world healthcare scenario, however, pa-
tients who su�ering di�erence diseases might have medical records
at various visits with heterogeneity. In this case, it is di�cult to
meta-learn during optimization loops. To alleviate this problem,
we propose to enhance some guarantee from the objective-level in
predictive modeling so that the scarcity of the fast adaptation in
the optimization-level can be compensated. In particular, we pro-
pose to improve the objective by incorporating supervision from
source domains. The �nal objective of MetaPred is given in the
mathematical form as:

LT(f�0 ) = LTs (f�0 ) + µ
K�1’
i

LSi (f�)

=
’
DTs
epi

L
�
yTs , f (XTs , �

0)
�
+ µ

K�1’
i

’
DSi
epi

L
�
ySi , f (XSi , �)

� (8)

where {(XSi , ySi )}K�1
i=1 is a collection of medical records matrix

and label vectors of source domains. DT s

epi and DS i
epi are samples

from the source domain and the simulated target domain in episode
Depi , respectively. Hyperparameter µ balances the contributions
of the sources and simulated target in the meta-learn process. Note
that the parameter of source loss is � but not �0, as there is no
need to conduct fast adaptation for source domain. Now the newly

Table 1: Statistics of datasets with disease domains.

Domain Case Control # of visit Ave. # of visit

MCI 1,965 4,388 161,773 22.24
Alzheimer’s 1,165 4,628 136,197 20.73
Parkinson’s 1,348 3,588 105,053 20.01

Dementia 3,438 1,591 98,187 18.06
Amnesia 2,974 4,215 180,091 21.60

designed meta-gradient is updated by the following equation:

� = � � �r�(LTs + µ
K�1’
i

LSi ) (9)

So far the main architecture of MetaPred is introduced. With the
incorporated source loss on the basis of general meta-learning, our
parameter learning process need to be rede�ned as:

�⇤ = Learner
⇣
T s , {Si }K�1

i ;MetaLearner({Si }K�1
i )

⌘
(10)

Algorithm 1 is the outline of meta-training of the MetaPred frame-
work. Similar to meta-training, episodes of the test set are consist
of samples from the source domain and genuine target domain. The
procedure in meta-test shows how to get a risk prediction for the
given low-resource disease by a few gradient steps. The test set of
the target disease domain is used to construct the meta-test episodes
for the model evaluation. Since MetaPred is model-agnostic, the
gradient updating scheme can be easily extended to more sophisti-
cated neural networks including various attention mechanisms or
gated networks with prior medical knowledge [3, 7].

4 EXPERIMENTS

4.1 Dataset
In this section, experimental results on a real-world EHR dataset are
reported. The data we used in experiments is the research data ware-
house (RDW) from Oregon Health & Science University (OHSU)
Hospital. It contains the EHR of over 2.5 million patients with more
than 20 million patient encounters, is mined by Oregon Clinical
and Translational Research Center (OCTRI). For certain conditions,
we may not have su�cient patients for training and testing. In our
study, we selected the conditions including more than 1, 000 cases
(MCI, Alzheimer’s disease, Parkinson’s disease, Dementia, and Am-
nesia) as the di�erent tasks in the multi-domain setting. For each
domain, controls are patients su�ering other cognitive disorders,
which makes the classi�cation tasks di�cult and meaningful in
practice. Also, Dementia and Amnesia are used as source domains,
while the more challenging tasks MCI, Alzheimer, Parkinson are
set as target domains.

We matched the case and controls by requiring their age di�er-
ence within a 5-year range so that the age distributions between
the case group and control group are consistent. For each patient,
we set a 2-year observation window to collect the training data, and
the prediction window is set to half a year (i.e., we are predicting
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Algorithm 1 MetaPred Training
Require: Source domains Si ; Simulated target domain T s ;
Require: Hyperparameters � , �, µ;
1: Initialize model parameter � randomly
2: while Outer-Loop not done do
3: Sample batch of episodes {Depi } from DSi and DTs

4: while Inner-Loop not done do
5: {(XSi , ySi )}K�1

i=1 , {(XTs , yTs )} = {Depi }
6: Compute LSi = L(ySi , f (XSi ,�)), i = 1, · · · ,K � 1
7: Parameter fast adaption with gradient descent:
8: �0 = � � �r�

ÕK�1
i LSi

9: end while
10: Compute LTs = L(yTs , f (XTs ,�0))
11: Update � = � � �r�(LTs + µ

ÕK�1
i LSi ) using Adam

12: end while

simulated target domains are tied, with di�erent stages to update.
The colors in Figure 2 provides an indication about the aforemen-
tioned two kinds of gradient pass.
Objective-Level Adaptation. While MAML provides an e�ective
transferable parameter learning scheme for disease risk prediction
in the low-resource situation, it cannot ensure su�ciently transfer-
ring the critical knowledge from the source domain. On the one
hand, meta-learning generally encourages that the simulated target
task could be randomly generated, and their model could be adapted
to a large or in�nite number of tasks [15, 41]. Di�erent from these
works, transfer learning often requires to capture domain shifts.
To do so, the simulated target that is used in learning to transfer
cannot be randomly sampled.

On the other hand, the task distribution is a common decisive
factor of the success for meta-learning. In other words, the dis-
tributions of the investigated source and target domains should
not be too diverse. In real-world healthcare scenario, however, pa-
tients who su�ering di�erence diseases might have medical records
at various visits with heterogeneity. In this case, it is di�cult to
meta-learn during optimization loops. To alleviate this problem,
we propose to enhance some guarantee from the objective-level in
predictive modeling so that the scarcity of the fast adaptation in
the optimization-level can be compensated. In particular, we pro-
pose to improve the objective by incorporating supervision from
source domains. The �nal objective of MetaPred is given in the
mathematical form as:

LT(f�0 ) = LTs (f�0 ) + µ
K�1’
i

LSi (f�)

=
’
DTs
epi

L
�
yTs , f (XTs , �

0)
�
+ µ

K�1’
i

’
DSi
epi

L
�
ySi , f (XSi , �)

� (8)

where {(XSi , ySi )}K�1
i=1 is a collection of medical records matrix

and label vectors of source domains. DT s

epi and DS i
epi are samples

from the source domain and the simulated target domain in episode
Depi , respectively. Hyperparameter µ balances the contributions
of the sources and simulated target in the meta-learn process. Note
that the parameter of source loss is � but not �0, as there is no
need to conduct fast adaptation for source domain. Now the newly

Table 1: Statistics of datasets with disease domains.

Domain Case Control # of visit Ave. # of visit

MCI 1,965 4,388 161,773 22.24
Alzheimer’s 1,165 4,628 136,197 20.73
Parkinson’s 1,348 3,588 105,053 20.01

Dementia 3,438 1,591 98,187 18.06
Amnesia 2,974 4,215 180,091 21.60

designed meta-gradient is updated by the following equation:

� = � � �r�(LTs + µ
K�1’
i

LSi ) (9)

So far the main architecture of MetaPred is introduced. With the
incorporated source loss on the basis of general meta-learning, our
parameter learning process need to be rede�ned as:

�⇤ = Learner
⇣
T s , {Si }K�1

i ;MetaLearner({Si }K�1
i )

⌘
(10)

Algorithm 1 is the outline of meta-training of the MetaPred frame-
work. Similar to meta-training, episodes of the test set are consist
of samples from the source domain and genuine target domain. The
procedure in meta-test shows how to get a risk prediction for the
given low-resource disease by a few gradient steps. The test set of
the target disease domain is used to construct the meta-test episodes
for the model evaluation. Since MetaPred is model-agnostic, the
gradient updating scheme can be easily extended to more sophisti-
cated neural networks including various attention mechanisms or
gated networks with prior medical knowledge [3, 7].

4 EXPERIMENTS

4.1 Dataset
In this section, experimental results on a real-world EHR dataset are
reported. The data we used in experiments is the research data ware-
house (RDW) from Oregon Health & Science University (OHSU)
Hospital. It contains the EHR of over 2.5 million patients with more
than 20 million patient encounters, is mined by Oregon Clinical
and Translational Research Center (OCTRI). For certain conditions,
we may not have su�cient patients for training and testing. In our
study, we selected the conditions including more than 1, 000 cases
(MCI, Alzheimer’s disease, Parkinson’s disease, Dementia, and Am-
nesia) as the di�erent tasks in the multi-domain setting. For each
domain, controls are patients su�ering other cognitive disorders,
which makes the classi�cation tasks di�cult and meaningful in
practice. Also, Dementia and Amnesia are used as source domains,
while the more challenging tasks MCI, Alzheimer, Parkinson are
set as target domains.

We matched the case and controls by requiring their age di�er-
ence within a 5-year range so that the age distributions between
the case group and control group are consistent. For each patient,
we set a 2-year observation window to collect the training data, and
the prediction window is set to half a year (i.e., we are predicting

Table 3: Diagnosis codes of related diseases that set as cases
or controls in disease diagnosis.

Disease ICD-9 Codes

Mild Cognitive Impairment 331.83, 331.89, 331.9
Alzheimer’s Disease 331.0, 331.2, 331.6, 331.7
Parkinson’s Disease 332.*
Dementia 290.*, 291.*, 294.*, 331.82
Amnesia 780.93
Huntington’s Disease 333.4
Mechanical Obstructions 331.3, 331.4, 331.5
Frontotemporal Dementia 331.1, 331.11, 331.19

⇤ means that all the codes in this diagnosis group are included.

meta-learning in healthcare has rarely been explored, despite the
fact that most of the medical problems are resource-limited. Conse-
quently, we propose MetaPred to address the general problem of
clinical risk predictions with low-resource EHRs.

6 CONCLUSION
In this paper, we propose an e�ective framework MetaPred that
can solve the low-resource medical records problem in clinical risk
prediction. MetaPred leverages deep predictive modeling with the
model agnostic meta-learning to exploit the labeled medical records
from high-resource domain. To design a more transferable learning
procedure, we introduce an objective-level adaptation for MetaPred
which not only take advantage of fast adaptation from optimization-
level but also take the supervision of the high-resources domain
into account. Extensive evaluation involving 5 cognitive diseases
is conducted on real-world EHR data for risk prediction tasks un-
der various source/target combinations. Our results veri�ed the
superiority of MetaPredwith limited patient EHRs, which can even
beat fully supervised deep neural networks for the challenging risk
prediction tasks of MCI and Alzheimer. Comprehensive longitudi-
nal EHRs more than 5 years will be explored for cognition related
disorders in the future clinical study.
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APPENDIX

A Additional Details on the Dataset
Table 3 summarizes the ICD-9 codes for a set of cognition related
disorders we identi�ed within the OHSU dataset.
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ü Leverages deep predictive modeling with the model agnostic meta-
learning to exploit the medical records from high-resource domain.

ü Introduce two different kinds of adaptation, which are parameter-level
adaptation, objective-level adaptation.

ü Extensive evaluation involving 5 cognitive diseases is conducted on real-
world EHR data for risk prediction tasks.

Source Code: https://github.com/sheryl-ai/MetaPred
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